BISHOP SITE STREAM AND WETLAND RESTORATION

2007 Annual Monitoring Report (Year 1) (FINAL)
Anson County
EEP Project No. D05010S
Design Firm: EcoScience Corporation

April 2008
Prepared for: NCDENR/ ECOSYSTEM ENHANCEMENT PROGRAM 1619 Mail Service Center Raleigh, NC 27699-1619

Prepared by: ECOSCIENCE CORPORATION
1101 Haynes Street, Suite 101
Raleigh, NC 27604

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY 1
2.0 PROJECT BACKGROUND 3
2.1 LOCATION AND SETTING 3
2.2 PROJECT STRUCTURE AND OBJECTIVES 3
2.3 PROJECT HISTORY AND BACKGROUND 7
3.0 PROJECT CONDITION AND MONITORING RESULTS 13
3.1 VEGETATION ASSESSMENT 13
3.1.1 VEGETATION PLOT DATA 13
3.1.2 VEGETATION PROBLEM AREAS 13
3.2 STREAM ASSESSMENT 13
3.2.1 STREAM MORPHOLOGICAL PARAMETERS 13
3.2.2 STREAM PROBLEM AREAS 13
3.3 WETLAND ASSESSMENT 17
3.3.1 GROUNDWATER GAUGE DATA 17
4.0 REFERENCES 17
LIST OF FIGURES
Figure 1. Site Location 6
Figure 2. Monitoring Plan View Sheet Index 9
Figures 2A-C Monitoring Plan Views 10-12
Figures 3A-C Integrated Problem Area Plan Views 14-16
LIST OF TABLES
Table 1. Project Mitigation Structure 5
Table 2. Project Activity and Reporting History 7
Table 3. Project Contacts 7
Table 4. Project Background 8
Table A-1. Vegetation Metadata A-2
Table A-2. Vegetation Vigor by Species A-3
Table A-3. Vegetation Damage by Speces A-3
Table A-4 Vegetation Damage by Plot A-4
Table A-5 Stem Count by Plot and Species A-5
Table A-6 Vegetation Problem Areas A-6
Table B-1 Stream Problem Areas B-2
Table B-2 Verification of Bankfull Events B-8
Table B-3a-d Categorical Stream Feature Visual Stability Assessment B-8
Table B-4a-c Baseline Morphology and Hydraulic Summary B-10
Table B-5a-d Morphology and Hydraulic Monitoring Summary. B-13
Table B-6a-b Visual Morphological Stability Assessment B-17
Table B-7 Benchmark Locations and Relative Elevations B-46
Table B-8 GPSd Cross-Section Pin Locations B-46

APPENDICES

APPENDIX A: VEGETATION RAW DATA
Vegetation Survey Data Tables
Vegetation Problem Area Table and Photos
Vegetation Plot Photos
APPENDIX B: STREAM GEOMORPHIC RAW DATA
Stream Problem Area Table
Stream Problem Area Photos
Permanent Station Photos
Stream Geomorphic Raw Data and Assessment Tables
Cross-Section Plots and Raw Data Tables
Longitudinal Profile Plots and Raw Data Tables
Pebble Count Plots and Raw Data Tables
Benchmark and Cross-Section Pin Location Tables
APPENDIX C: WETLAND DATA
Groundwater Monitoring Gauge Hydrographs

1.0 EXECUTIVE SUMMARY

EcoScience Corporation (ESC) was retained by the North Carolina Ecosystem Enhancement Program (EEP) to provide stream and wetland restoration/enhancement design services for the Bishop Site Stream and Wetland Restoration (hereafter referred to as the Site). The Site, which is in the Yadkin River Basin (Cataloguing Units 03040104 and 03040105), is located north of Wadesboro in Anson County, North Carolina (Figure 1). It is just northwest (upstream) of the Rocky River's confluence with the Pee Dee River. Three separate construction areas, each confined within a North Carolina Department of Transportation (NCDOT)-owned conservation easement, comprise the approximate 200-acre Site: Camp Branch (Site A, 94.9 acres), Dula Thoroughfare (Site B, 70.8 acres), and the Unnamed Tributary (UT) to Dula Thoroughfare (Site C, 33.7 acres).

The following report summarizes first year (Year 1) monitoring activities at the Site. Site construction began in May 2006 and was completed in February 2007 when the Site was planted (grading activities were completed in October 2006). As-built surveys for the Site were performed in May 2007. First year monitoring was conducted in October 2007. In order to be considered successful, the Site must achieve vegetative, groundwater, and stream channel success criteria for a minimum of five years (or until success criteria are achieved).

Vegetation Monitoring

Vegetation monitoring for Year 1 was performed based on the Carolina Vegetation Survey (CVS)-EEP Protocol for Recording Vegetation Version 4.0 [Lee et al. 2006]). Vegetation success criteria for Site vegetation is based on a minimum survival of 260 stems per acre of planted species at the end of monitoring Year 5. Based on the first year surveys, the average count of the surviving planted species across the Site is 850 stems per acre (1047 stems per acre at Camp Branch, 842 stems per acre at Dula Thoroughfare, and 310 stems per acre at UT to Dula Thoroughfare). Although planted stem survivability exceeds the required average of 260 stems/acre, planted bare root survivability at UT to Dula Thoroughfare was observed to significantly less than that observed at the other two Site restoration areas (Camp Branch and Dula Thoroughfare). Thus, supplemental plantings may be warranted within planted areas at UT to Dula Thoroughfare.

Stream Monitoring

As stated in the project's Mitigation Report (EEP 2007), success criteria for on-Site stream reaches will include 1) successful classification of the reach as a functioning system (Rosgen 1996), and 2) channel stability indicative of a stable stream system. Longitudinal profile and cross-sectional surveys (including modified Wolman pebble counts at each) were conducted along Site stream reaches at their locations as specified in the Site monitoring plan. Crest gauges were also installed to monitor for the occurrence of bankfull events.

Stream channel stability within each of the three Site restoration areas was observed to be good to excellent. Based on observations since grading activities were completed, Camp Branch (Site A) continues to narrow its width-to-depth ratio towards values characteristic of E-type streams (it was designed as a low width-to-depth ratio C channel with the intention of a gradual geomorphic shift towards an E channel).

Due to exceptional drought conditions throughout the first project monitoring year, none of the stream reaches held any water at the time of monitoring activities. Furthermore, crest gauges did not indicate the occurrence of any bankfull events for this monitoring year (it should be noted that at least three bankfull events occurred immediately following Site grading activities before the installation of Site crest gauges).

Wetland Hydrology Monitoring

Wetland groundwater monitoring gauges were installed within the proposed wetland restoration areas adjacent to Dula Thoroughfare. A total of three gauges were installed: two remain in their original locations and one was relocated to better reflect representative groundwater levels within the excavated floodplain. Data from the gauges indicate that hydrologic success criteria was achieved in the first year of project monitoring despite exceptional drought conditions across much of the State (including Anson County).

2.1 LOCATION AND SETTING

The Site is located north of Wadesboro in Anson County, NC, just upstream of the confluence of the Rocky and Yadkin Rivers (Figure 1, Appendix A). In order to access the Site, from Wadesboro, take North Carolina Highway 52 (NC 52) north. Approximately 1.3 miles south of NC 52 's crossing over the Rocky River, turn east onto Carpenter Road (a gravel road). Follow Carpenter Road to the east. Gated access points to the Site (one for Camp Branch, one for Dula Thoroughfare and UT to Dula Thoroughfare) abut Carpenter Road from the east.

2.2 PROJECT STRUCTURE AND OBJECTIVES

Prior to restoration activities, land use at the Site was primarily agricultural. Many Site drainage features and wetland areas were dredged, straightened, and filled in some locations to accommodate row crop cultivation and other agrarian activities. Stream channel instability and loss of wetland functions resulted within impacted areas.

Primary Site restoration goals included the restoration of stable dimension, pattern, and profile for impacted on-Site stream reaches including Camp Branch, the UT to Camp Branch, Dula Thoroughfare, and the UT to Dula Thoroughfare. A second primary project goal was the restoration of riparian wetlands adjacent to Dula Thoroughfare.

Secondary Site restoration goals included stream channel enhancement and preservation as well as wetland enhancement and preservation. These goals were achieved via site planting with bare root seedlings to recreate pre-disturbance vegetative communities within their appropriate landscape contexts.

At Camp Branch (Site A), specific Site restoration goals included:

- Priority II stream restoration (including all attendant benefits outlined in Rosgen 1996) via excavation of approximately 1,767 linear feet of a designed E/C-type stream of the main Camp Branch channel on new location, including adjacent floodplain excavation to achieve an entrenchment ratio characteristic of E/C-type streams;
- Priority I stream restoration (including all attendant benefits outlined in Rosgen 1996) of approximately 403 linear feet and Priority II restoration of approximately 143 linear feet of a designed E/C-type stream of a UT to Camp Branch, including floodplain excavation along the UT upstream of Camp Branch to achieve a stable confluence;
- Level II stream enhancement of approximately 945 linear feet of Camp Branch upstream of its confluence with the UT via riparian plantings adjacent to the Camp Branch stream banks; and
- Re-establishment of the characteristic, pre-disturbance Piedmont Bottomland Forest (Schafale and Weakley 1990) community adjacent to restoration reaches using bare root seedling plantings.

At Dula Thoroughfare (Site B), specific Site restoration goals included:

- Priority II stream restoration via excavation of approximately 2,730 linear feet of a designed Etype stream of Dula Thoroughfare (including an associated tributary), including adjacent floodplain excavation to achieve and entrenchment ratio characteristic of E-type streams;
- Restoration of approximately 3.1 acres of riverine wetlands adjacent to Dula Thoroughfare via floodplain excavation in previously identified hydric soil areas, thereby re-establishing jurisdictional wetland hydrology;
- Aquatic habitat creation via excavation of vernal pools within floodplain cut areas; and
- Re-establishment of the characteristic, pre-disturbance Piedmont Bottomland Forest (Schafale and Weakley 1990) community adjacent to restoration reaches using bare root seedling plantings.

At UT to Dula Thoroughare (Site C), specific Site restoration goals included:

- Level I enhancement of approximately 1,871 linear feet of stream via backfill of straightened and ditched portions of the existing watercourse, thereby re-establishing characteristic stream dimension and pattern by reintroducing flow into adjacent relic channel areas;
- Level II enhancement of approximately 480 linear feet of stream via riparian plantings adjacent to the UT to Dula Thoroughfare stream banks; and
- Re-vegetation of open areas adjacent to the UT to Dula Thoroughfare via plantings of characteristic, pre-disturbance community types described by Schafale and Weakley (1990) using bare root seedling plantings.

Prior to restoration activities, each of the on-Site drainage features listed above had been impacted to accommodate agricultural land usage (primarily row crop cultivation). In the classic scenario, stream channels are traditionally relocated to the toe of the adjacent valley slope, straightened, and dredged in an attempt to decrease flooding and increase the size of the cultivatable areas within the floodplain. Field evidence suggests this was the case with Camp Branch, while Dula Thoroughfare and the UT to Dula Thoroughfare were straightened and ditched along their existing locations. The straightening and ditching of Dula Thoroughfare likely drained adjacent riverine wetlands with the exception of those along the fringe of the channel.

Table 1: Project Components
Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S

Project Component or Reach ID	Pre- Existing Feet/Acres ${ }^{1}$	Restoration Level	Approach	Footage or Acreage	Stationing	Buffer Acres	Comment
Reach 1	1,500 lf	R	P2	1,767 lf	0+00-17+94	N/A	Total includes 27 LF gap in easement at channel ford
Reach 2	945 lf	E2	N/A	945 lf	N/A	N/A	Enhancement reaches not stationed
Reach 3	$\begin{aligned} & 220 \text { lf } \\ & \text { (total) } \end{aligned}$	R	P1	403 lf	$0+00-4+33$	N/A	Total includes 30 LF gap in easement at channel ford
Reach 4	See above	R	P2	143 lf	$4+33-5+76$	N/A	
Reach 5	1,840 lf	R	P2	2,025 lf	0+00-20+25	N/A	
Reach 6	540 lf	R	P2	705 lf	0+00-7+05	N/A	
Reach 7	1,871 lf	E1	N/A	1,871 lf	N/A	N/A	Enhancement reaches not stationed
Reach 8	480 lf	E2	N/A	4801 f	N/A	N/A	Enhancement reaches not stationed
Stream Preservation	12,918 lf	P	N/A	12,918 lf	N/A	N/A	
Riparian Wetland Restoration	N/A	R	N/A	3.1 ac	N/A	N/A	
Riparian Wetland Enhancement	1.0 ac	WE	N/A	1.0 ac	N/A	N/A	
Riparian Wetland Preservation	7.5 ac	P	N/A	7.5 ac	N/A	N/A	
Component Summations							
		Wetland (Ac)		Upland (Ac)		Buffer (Ac)	BMP
Restoration Level	Stream (lf)	Riparian	Non- Riparian				
Restoration	5,043	3.1	N/A	N/A		N/A	N/A
Enhancement	N/A	1.0	N/A	N/A		N/A	N/A
Enhancement I	1,871	N/A	N/A	N/A		N/A	N/A
Enhancement II	1,425	N/A	N/A	N/A		N/A	N/A
Creation	N/A	N/A	N/A	N/A		N/A	N/A
Preservation	12,918	7.5	N/A	N/A		N/A	N/A
HQ Preservation	N/A	N/A	N/A	N/A		N/A	N/A
Totals	21,257	11.6	N/A	N/A		N/A	N/A

${ }^{1}$ Values are approximate
*N/A - Not applicable

2.3 PROJECT HISTORY AND BACKGROUND

Table 2. Project Activity and Reporting History Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S		
Activity Report	Data Collection Complete	Actual Completion or Delivery
Restoration Plan	August 2004	September 2004
Final Design (90\%)	March 2005	June 2005
Construction	N/A*	February 2007
Temporary S\&E mix applied to entire project area	N/A	Throughout construction
Permanent seed mix applied to reach/segments	N/A	October 2006
Bare Root Seedling Installation	N/A	February 2007
Mitigation Plan	June 2007	October 2007
Final Report	June 2007	October 2007
Year 1 Vegetation Monitoring	October 2007	October 2007
Year 1 Stream Monitoring	October 2007	October 2007
Year 1 Wetland Monitoring	December 2007	December 2007

*N/A - Not applicable

Table 3. Project Contacts Bishop Site Stream and Wetland Restoration / EEP Project No. D05010S	
Designer EcoScience Corporation	Jim Cooper (Designer) 1101 Haynes Street, Suite 101 Raleigh, NC 27604 (919) 828-3433
Construction Contractor Vaughn Contruction, Inc.	Tommy Vaughn and Spencer Walker (Foremen) P.O. Box 796 Wadesboro, NC 28170 (704) 694-6450
Planting Contractor Kiker Forestry and Realty	```Jason Kiker (Consulting Forester) P.O. Box 933 Wadesboro, NC 28170 (704) 694-6436```
Seeding Contactor NA^{*}	NA
Seed Mix Sources	NA
Nursery Stock Suppliers	International Paper Supertree Nursery
Monitoring Performers EcoScience Corporation	1101 Haynes Street, Suite 101 Raleigh, NC 27604 (919) 828-3433
Stream Monitoring POC	Jim Cooper
Vegetation Monitoring POC	Jens Geratz
Wetland Monitoring POC	Justin Wright

Bishop Site Stream and Wetland 4. Project Background	
Restoration/EEP Project No. D05010S	
Project County	Anson
Drainage Areas:	2.9 square miles
Camp Branch	Dula Thoroughfare
UT to Dula Thoroughfare	0.36 square miles
Impervious cover estimate (\%)	0.23 square miles
Stream Orders (per USGS):	percent for all streams
Camp Branch Dula Thoroughfare UT to Dula Thoroughfare	$2^{\text {nd }}$
Physiographic Region	$1^{\text {st }}$
Ecoregion (Griffith and Omernik)	$1^{\text {st }}$
Rosgen Classifications of As-built:	Piedmont
Camp Branch	Triassic Basins
UT to Camp Branch	C4
Dula Thoroughfare	E/C4
UT to Dula Thoroughfare	E5
Cowardin Classification	E/D5
	Streams: R3US1/R3US2
Wetlands: PFO1	
Dominant soil types	Badin Channery Silt Loam (BaB, BaC)
	Badin-Goldston Complex (BgD)
McQueen (MrB)	
Reference Site ID	Shellbluff (ShA)
USGS HUCs for Project and Reference	Tetotum (ToA)
Chewacla (ChA)	
NCDWQ Sub-basins for Project and Reference	N/A* (reference areas established on-Site)
NCDWQ classification for Project and Reference	03040104 (Dula Thoroughfare, UT to Dula Thoroughfare)
Any portion of any project segment 303d listed?	03040105 (Camp Branch)
Any portion of any project segment upstream of a 303d	No (all Site waterways)
listed segment?	No
Reasons for 303d listing or stressor	N/A
Percent of project easement fenced	No fencing along easement

*N/A - Not applicable

3.0 PROJECT CONDITION AND MONITORING RESULTS

3.1 VEGETATION ASSESSMENT

3.1.1 VEGETATION PLOT DATA

Vegetation plot locations are displayed on Figures 2A-C. Vegetation monitoring was conducted using the CVS-EEP Protocol for Recording Vegetation Version 4.0 (Lee et al. 2006). The taxonomic standard used for species identifications was Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas (Weakley 2007). All plot data tables and photos are included in Appendix A.

Despite exceptional drought conditions in Anson County throughout most of the first year of project monitoring (2007), the total average density of planted stems per acre across the Site is 850 stems/acre. The average planted stem density at Camp Branch was 1087 stems/acre, 842 stems/acre at Dula Thoroughfare, and 310 stems/acre at the UT to Dula Thoroughfare. ESC believes that the lower survivability of planted stems at UT to Dula Thoroughfare may be attributable to dry soil conditions exacerbated by the steep valley slopes characteristic of this portion of the Site.

3.1.2 VEGETATION PROBLEM AREAS

Vegetation problem areas are displayed on Figures 3A-C. Table A-6 (Vegetation Problem Areas) and vegetation problem area photos are included in Appendix A.

3.2 STREAM ASSESSMENT

Longitudinal profiles were surveyed along the entire restored lengths of Camp Branch and UT to Camp Branch (Figure 2A). Stream channel cross-sections were surveyed along each of the restored stream reaches on-Site (Figures 2A-C).

3.2.1 STREAM MORPHOLOGICAL PARAMETERS

All tables summarizing stream channel morphological parameters, including longitudinal profile and cross-sectional survey data as well as visual assessment tables, are included in Appendix B. Please note that since passive enhancement was undertaken along UT to Dula Thoroughfare (Reach 7), a baseline morphology and hydraulic summary table was not prepared for this reach.

3.2.2 STREAM PROBLEM AREAS

Stream channel problem areas are displayed on Figures 3A-C. Stream channel problem area photos and Table B-1 (Stream Problem Areas) are included in Appendix B.

Generally, stream channel bed and bank stability was observed to be good to excellent across the Site in all restoration and enhancement reaches. It should be noted that although stream banks were generally stable, drought conditions likely inhibited herbaceous vegetation growth along stream banks, which greatly buffets stability. Very few areas of bank erosion were observed. Some channel bar formation has occurred within the upper reaches of Camp Branch (Reach 1, Figure 3A). ESC believes this is the result of the abrupt change in hydrodynamics as the Camp Branch floodplain substantially widens at the beginning of the restored reach, thereby lessening stream power. Thus, ESC does not believe this to be a stream problem area.

3.3 WETLAND ASSESSMENT

3.3.1 GROUNDWATER GAUGE DATA

Wetland restoration areas and groundwater monitoring gauge locations are displayed on Figure 2C. Monitoring gauge hydrographs and associated data tables are included in Appendix C.

A total of three groundwater monitoring gauges were installed within the lower (downstream) portions of Dula Thoroughfare (Figure 2B). The two upstream-most gauges (Gauges 2 and 3) have remained in their original locations throughout the monitoring period. Gauge 1 was moved in summer to better represent local groundwater conditions. According to the County Soil Survey (NRCS 2000), the Anson County growing season is 250 days long, extending from March 15 to November 19 (based on guidance provided in the United States Army Corps of Engineers' 2003 Stream Mitigation Guidelines). Gauges 2 and 3 recorded groundwater levels within the upper 12 inches of the soil surface for periods of 41 and 42 consecutive days, respectively, exceeding the 31.25 consecutive days that corresponds to 12.5 percent of the growing season. Thus, wetland hydrologic success was achieved in the first year of project monitoring.

4.0 REFERENCES

Lee, Michael T., R.K. Peet, S.D. Roberts, and T.R. Wenthworth. 2006. CVS-EEP Protocol for Recording Vegetation, Version 4.0 (http://cvs.bio.unc/edu/methods.htm)

Weakley, A.S. 2007. Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas (Working Draft of 11 January 2007). University of North Carolina at Chapel Hill: Chapel Hill, NC.

APPENDIX A: VEGETATION RAW DATA

CVS VEGETATION DATA TABLES

| Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S |
| :--- | :--- |

Table A-2. Vegetation Vigor by Species Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S							
	Species	4	3	2	1	0	Missing
	Asimina triloba		2	3			
	Betula nigra	28	48	8			
	Carya ovata		1				
	Celtis laevigata		11	2			
	Cephalanthus occidentalis	8	10	15	1		
	Cornus amomum	2	24	36			
	Cornus florida		2				
	Fraxinus pennsylvanica	7	9	2			
	Nyssa biflora		2	2			
	Quercus falcata	3	2				
	Quercus michauxii	1	7	5			
	Quercus pagoda	4	8	3			
	Quercus phellos	6	12	1			
	Fagus grandifolia		1	1			
	Quercus rubra	2	4	2			
	Platanus occidentalis	7	7	1			
	Ulmus americana	2	10	3			
TOT:	17	70	160	84	1		

$\begin{array}{c}\text { Table A-3. }\end{array}$ Vegetation Damage by Species				
Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S				

Table A-4. Vegetation Damage by Plot Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S				
Plot	All Damage Categories	(no damage)	Deer	Insects
1	4	3		1
2	36	27	9	
3	22	22		
4	33	24	9	
5	33	32	1	
6	27	26	1	
7	33	28	5	
8	16	16		
9	39	39		
10	29	29		
11	12	12		
12	8	7	1	
13	13	13		
14	3	3		
15	7	7		
TOT: 15	315	288	26	1

Table A-5. Stem Count by Plot and Species
Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S

	Species	Total Stems	$\begin{gathered} \text { \# } \\ \text { plots } \end{gathered}$	avg\# stems	$\begin{gathered} \text { Plot } \\ 1 \end{gathered}$	Plot	$\begin{gathered} \text { Plot } \\ 3 \end{gathered}$	$\begin{gathered} \text { Plot } \\ \mathbf{4} \\ \hline \end{gathered}$	$\begin{gathered} \text { Plot } \\ 5 \end{gathered}$	$\begin{gathered} \text { Plot } \\ 6 \end{gathered}$	$\begin{gathered} \text { Plot } \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \text { Plot } \\ 8 \end{gathered}$	$\begin{gathered} \text { Plot } \\ 9 \end{gathered}$	$\begin{gathered} \text { Plot } \\ 10 \end{gathered}$	$\begin{gathered} \text { Plot } \\ 11 \\ \hline \end{gathered}$	Plot	$\begin{gathered} \text { Plot } \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Plot } \\ 14 \end{gathered}$	$\begin{gathered} \text { Plot } \\ 15 \end{gathered}$
	Asimina triloba	5	3	1.67	3	1		1											
	Betula nigra	84	10	8.4		9		10	11	10	7	1	17	14	2	3			
	Carya ovata	1	1	1											1				
	Celtis laevigata	13	7	1.86	1	2	3			1	1			1			4		
	Cephalanthus occidentalis	34	9	3.78		5		2	7	2	6	1	5	3		3			
	Cornus amomum	62	9	6.89		5		12	9	8	12	3	9	3		1			
	Cornus florida	2	2	1														1	1
	Fagus grandifolia	2	2	1													1		1
	Fraxinus pennsylvanica	18	7	2.57		1	3	3		2		4		4	1				
	Nyssa biflora	4	4	1				1				1	1						1
	Platanus occidentalis	15	8	1.88		3	2	1	1	1	1		1		5				
	$Q u e r c u s$ falcata	5	3	1.67													2	2	1
	Quercus michauxii	13	7	1.86		5	2		1		1	2		1	1				
	Quercus pagoda	15	9	1.67		3		2	1	1	3	2	1	1		1			
	Quercus phellos	19	10	1.9		2	5		3	1	1	2	2	1	1				1
	Quercus rubra	8	2	4													6		2
	Ulmus americana	15	7	2.14			7	1		1	1		3	1	1				
TOT:	17	315	17		4	36	22	33	33	27	33	16	39	29	12	8	13	3	7
	Average \# of stems/acre				162	1457	890	1335	1335	1093	1335	647	1578	1174	486	324	526	121	283
Site Total: 850 trees/acre					Camp Branch: 1087 trees/acre							Dula Thoroughfare: 842 trees/acre					UT to Dula Thoroughfare: 310 trees/acre		

VEGETATION PROBLEM AREAS

*EEP feature issue descriptions have been modified to best characterize identified problem areas

Table A-6. Vegetation Problem Areas				
Fishop Site Stream and Wetland Restoration/EEP Project No. D05010S				
Floodplain cut erosion/minor rill	Station \#/ Range	Figure 3A	Drought conditions inhibiting herbaceous vegetation growth to buffet floodplain cut stability	
Floodplain cut erosion/minor rill	Figure 3A	Drought conditions inhibiting herbaceous vegetation growth to buffet floodplain cut stability	VPA1	
Bare floodplain area	Figure 3A (30-40 ft. in length along channel)	Drought conditions inhibiting herbaceous and woody vegetation growth along floodplain; naturally rocky subsoil in this location	VPA3	
Floodplain cut erosion/minor rill	Figure 3A	Drought conditions inhibiting herbaceous vegetation growth to buffet floodplain cut stability	VPA4	
Floodplain cut erosion/minor rill	Figure 3B	Drought conditions inhibiting herbaceous vegetation growth to buffet floodplain cut stability	VPA5	
Rill formation along valley slope	Figure 3C	Drought conditions inhibiting herbaceous vegetation growth to buffet floodplain cut stability; erosion from agricultural field upland from easement boundary	VPA6	

VEGETATION PROBLEM AREA PHOTOS

VPA1: Rill erosion along floodplain cut (Camp Branch, Figure 3A)

VPA2: Rill erosion along floodplain cut (Camp Branch, Figure 3A)

VPA3: Bare floodplain area adjacent to Camp Branch (Camp Branch, Figure 3A)

VPA4: Rill erosion along floodplain cut (Camp Branch, Figure 3A)

VPA5: Rill erosion along floodplain cut (Dula Thoroughfare, Figure 3B)

VPA6: Rill erosion along valley slope (UT to Dula Thoroughfare, Figure 3C)

VEGETATION MONITORING PLOT PHOTOS

(Note: All plot photos were taken from the plot origin facing the opposite plot corner)

Plot 1 (Camp Branch)

Plot 2 (Camp Branch)

Plot 3 (Camp Branch)

Plot 4 (Camp Branch)

Plot 5 (Camp Branch)

Plot 6 (Camp Branch)

Plot 7 (Camp Branch)

Plot 8 (Dula Thoroughfare)

Plot 9 (Dula Thoroughfare)

Plot 10 (Dula Thoroughfare)

Plot 11 (Dula Thoroughfare)

Plot 12 (Dula Thoroughfare)

Plot 13 (UT to Dula Thoroughfare)

Plot 14 (UT to Dula Thoroughfare)

Plot 15 (UT to Dula Thoroughfare)

APPENDIX B: STREAM GEOMORPHIC RAW DATA

STREAM GEORMOPHIC RAW DATA

STREAM PROBLEM AREAS

Table B-1. Stream Problem Areas				
Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S				

*N/A-not applicable (enhancement reaches not stationed)
${ }^{1}$ Due to dry channel conditions, dense herbaceous growth within the stream impeded photographing this problem area clearly

STREAM PROBLEM AREA PHOTOS

SPA1: Bank erosion on left bank of Camp Branch, Reach 1 (14+00-14+10)

SP2A: Piping within downstream-most rock sill set on UT to Dula Thoroughfare (Reach 7)

STREAM PHOTO POINT STATION PHOTOS

Photo Point 1: Looking upstream

Photo Point 1: Looking downstream

Photo Point 2: Looking upstream

Photo Point 2: Looking downstream

Photo Point 3: Looking upstream

Photo Point 3: Looking downstream

Photo Point 4: Looking upstream

Photo Point 4: Looking downstream

STREAM GEOMORPHIC RAW DATA

VERIFICATION OF BANKFULL EVENTS

Stream channel crest gauges were installed adjacent to Camp Branch, UT to Camp Branch, and Dula Thoroughfare (Figures 2A-B). Likely attributable to exceptional drought conditions in Anson County throughout the first year of project monitoring (2007), crest gauges did not indicate the occurrence of any bankfull events. However, it should be noted that at least two bankfull events occurred at Camp Branch, UT to Camp Branch, and Dula Thoroughfare shortly after the completion of Site grading activities in late 2006 before Site planting.

Table B-2. Verification of Bankfull Events Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S

Date of Data Collection	Date of Occurrence	Method	Photo Number
$12 / 2007$	N/A*1	Crest Gauge (one each at Camp Branch, UT to Camp Branch,	N/A

*N/A - Not applicable
${ }^{1}$ No bankfull events were observed to have occurred during the Year-1 (2007) monitoring period

Table B-3a. Categorical Stream Feature Visual Stability Assessment Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S Segment/Reach: Camp Branch (Reach 1 [Table I])

Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles	100%	88%				
B. Pools	100%	79%				
C. Thalweg	100%	100%				
D. Meanders	100%	100%				
E. Bed General	100%	95%				
F. Rock Vanes	N/A*	N/A				
G. Root Wads	N/A	N/A				

*N/A - Not applicable

Table B-3b. Categorical Stream Feature Visual Stability Assessment Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S Segment/Reach: UT to Camp Branch (Reaches 3 and 4 [Table I])						
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles	100%	100%				
B. Pools	100%	100%				
C. Thalweg	100%	100%				
D. Meanders	100%	100%				
E. Bed General	100%	100%				
F. Rock Vanes	N/A*	N/A				
G. Root Wads	N/A	N/A				

[^0]| Table B-3c. Categorical Stream Feature Visual Stability Assessment
 Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S
 Segment/Reach: Dula Thoroughfare (Reaches 5 and 6 [Table I]) | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Feature | Initial | MY-01 | MY-02 | MY-03 | MY-04 | MY-05 |
| A. Riffles | N/A* | N/A | | | | |
| B. Pools | N/A | N/A | | | | |
| C. Thalweg | 100% | 100% | | | | |
| D. Meanders | 100% | 100% | | | | |
| E. Bed General | 100% | 100% | | | | |
| F. Rock Vanes | N/A* | N/A | | | | |
| G. Root Wads | N/A | N/A | | | | |

*N/A - Not applicable
${ }^{1}$ Riffles and pools were not differentiated in the design for Dula Thoroughfare-the channel has a consistent depth reach-wide

Table B-3d. Categorical Stream Feature Visual Stability Assessment Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S Segment/Reach: UT to Dula Thoroughfare (Reach 7 [Table I])						
Initial	MY-01	MY-02	MY-03	MY-04	MY-05	
Feature	N/A*	N/A				
A. Riffles	N/A	N/A				
B. Pools	100%	100%				
C. Thalweg	100%	100%				
D. Meanders	100%	100%				
E. Bed General	100%	90%				
F. Rock Vanes	N/A	N/A				
G. Root Wads						

*N/A - Not applicable
${ }^{1}$ Passive enhancement was performed on UT to Dula Thoroughfare; thus, riffles and pools were not differentiated

Table B-4a. Baseline Morphology and Hydraulic Summary
Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S
Camp Branch: Reach 1 (1,810 linear feet [longitudinal profile monitoring reach length])

Parameter	USGS Gage Data			Regional Curve Interval			Pre-Existing Condition			Project Reference Stream			Design			As-built/Year-1 ${ }^{1}$		
Dimension	Min	Med	Max															
BF Width (ft)	N/A*	N/A	N/A	N/A	18.8	N/A	16.0	17.8	19.5	21.3	21.3	21.3	16.0	19.0	22.0	18.1	20.4	22.8
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A	17.2	20.8	24.3	NA	NA	NA	70.0	90.0	300.0	91.3	95.2	99.9
BF Cross Sectional Area (ft^{2})	N/A	N/A	N/A	N/A	44.2	N/A	42.0	42.0	42.0	38.7	38.7	38.7	30.0	30.0	30.0	24.0	27.8	31.6
BF Mean Depth (ft)	N/A	N/A	N/A	N/A	2.1	N/A	2.2	2.4	2.6	1.8	1.8	1.8	1.4	1.6	1.9	1.3	1.4	1.4
BF Max Depth (ft)	N/A	N/A	N/A	N/A	N/A	N/A	2.5	2.8	3.0	2.7	2.7	2.7	1.8	2.0	2.3	1.8	1.9	2.0
Width/Depth Ratio	N/A	N/A	N/A	N/A	9.0	N/A	6.2	7.6	8.9	11.8	11.8	11.8	10.0	11.9	13.8	13.6	14.9	16.3
Entrenchment Ratio	N/A	N/A	N/A	N/A	N/A	N/A	1.1	1.1	1.2	NA	NA	NA	3.7	4.7	15.8	4.5	4.7	4.9
Wetted Perimeter(ft)	N/A	N/A	N/A	N/A	23.0	N/A	20.8	22.6	24.3	24.9	24.9	24.9	21.8	22.2	22.8	23.0	23.2	23.2
Hydraulic radius (ft)	N/A	N/A	N/A	N/A	1.9	N/A	1.7	1.9	2.0	1.6	1.6	1.6	1.3	1.4	1.4	1.2	1.2	1.2
Pattern																		
Channel Beltwidth (ft)	N/A	N/A	N/A	N/A	N/A	N/A	19	37	79	NA	NA	NA	45.0	62.0	77.0	45.0	62.0	80.0
Radius of Curvature (ft)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	40.0	51.1	76.0	40.0	51.1	76.0
Meander Wavelength (ft)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	102.0	137.8	171.0	102.0	137.8	171.0
Meander Width ratio	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	2.4	3.3	4.1	2.2	3.0	3.9
Profile																		
Riffle length (ft)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	9.0	21.9	37.0	10.2	23.4	43.3
Riffle slope (ft/ft)	N/A	N/A	N/A	N/A	N/A	N/A	0.001	0.01	0.06	0.008	NA	0.02	0.003	0.005	0.009	0	0.01	0.02
Pool length (ft)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	23.0	29.5	38.0	11.6	23.0	37.0
Pool spacing (ft)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	48.0	72.5	122.0	44.8	86.5	173.4
Substrate																		
d50 (mm)	N/A	13.8	N/A	7.2	7.2	7.2	gravel	gravel	gravel	0.4	14.7	31.0						
d84 (mm)	N/A	39.0	N/A	NA	NA	NA	gravel	gravel	gravel	16.0	31.5	45.0						
Additional Reach Parameters																		
Valley Length (ft)	N/A			N/A			1,640			NA			1,640			1,640		
Channel Length (ft)	N/A			N/A			1,722			NA			1807			1,810		
Sinuosity	N/A			N/A			1.05			1.18			1.1			1.1		
Water Surface Slope (ft/ft)	N/A			N/A			0.0041			0.0029			N/A			N/A		
BF slope (ft/ft)	N/A			N/A			NA			0.0029			0.004 (0.0035-0.0055)			0.0034		
Rosgen Classification	N/A			N/A			G4			E/C4			C4			C4		

[^1]Table B-4b. Baseline Morphology and Hydraulic Summary Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S
UT to Camp Branch: Reaches 3 and 4 (556 linear feet [longitudinal profile monitoring reach length])

Parameter	USGS Gage Data			Regional Curve Interval			Pre-Existing Condition			Project Reference Stream			Design			As-built/Year-1 ${ }^{1}$		
Dimension	Min	Med	Max															
BF Width (ft)	N/A*	N/A	N/A	N/A	6.0	N/A	NA	NA	NA	NA	NA	NA	5.0	6.0	7.0	6.8	7.9	8.0
Floodprone Width (ft)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	35.0	200.0	500.0	35.0	200.0	500.0
BF Cross Sectional Area (ft^{2})	N/A	N/A	N/A	N/A	7.2	N/A	NA	NA	NA	NA	NA	NA	6.4	6.4	6.4	3.0	4.4	5.8
BF Mean Depth (ft)	N/A	N/A	N/A	N/A	0.9	N/A	NA	NA	NA	NA	NA	NA	0.5	0.6	0.7	0.4	0.6	0.7
BF Max Depth (ft)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	0.7	0.8	1.0	0.6	0.8	1.0
Width/Depth Ratio	N/A	N/A	N/A	N/A	6.7	N/A	NA	NA	NA	NA	NA	NA	8.6	10.0	12.0	11.2	13.1	19.8
Entrenchment Ratio	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	5.8	33.0	83.0	4.4	25.3	63.3
Wetted Perimeter(ft)	N/A	N/A	N/A	N/A	7.8	N/A	NA	NA	NA	NA	NA	NA	7.0	7.2	7.4	8.7	9.1	9.3
Hydraulic radius (ft)	N/A	N/A	N/A	N/A	0.8	N/A	NA	NA	NA	NA	NA	NA	0.9	0.9	0.9	0.5	0.5	0.5
Pattern																		
Channel Beltwidth (ft)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	32.0	37.0	42.0	32.0	37.0	42.0
Radius of Curvature (ft)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	14.0	18.0	30.0	14.0	18.0	30.0
Meander Wavelength (ft)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	59.0	60.6	62.0	59.0	60.6	62.0
Meander Width ratio	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	5.3	6.2	7.0	4.1	4.7	5.3
Profile																		
Riffle length (ft)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	7.0	11.3	18.0	NA^{2}	NA	NA
Riffle slope (ft/ft)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	0.007	0.01	0.02	NA	NA	NA
Pool length (ft)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	8.0	14.8	24.0	NA	NA	NA
Pool spacing (ft)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	21.0	37.2	46.8	NA	NA	NA
Substrate																		
d50 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	gravel	gravel	gravel	0.4	21.2	69.0
d84 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	gravel	gravel	gravel	0.5	45.7	110.0
Additional Reach Parameters																		
Valley Length (ft)		N/A			N/A			NA			NA			749			667	
Channel Length (ft)		N/A			N/A			NA			NA			624			556	
Sinuosity		N/A			N/A			NA			NA			1.2			1.2	
Water Surface Slope (ft/ft)		N/A			N/A			NA			NA			N/A			N/A	
BF slope (ft/ft)		N/A			N/A			NA			NA		0.01	0.004-0.01	013)		0.01	
Rosgen Classification		N/A			N/A			NA			NA			E4/5			C4/5	

[^2]Table B-4c. Baseline Morphology and Hydraulic Summary Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S

Dula Thoroughfare: Reaches 5 and 6 (2,730 linear feet)

Regional Curve Interval			Pre-Existing Condition			Project Reference Stream			Design			As-built/Year-1 ${ }^{1}$		
Min	Med	Max												
N/A	8.8	N/A	12.3	14.1	15.9	NA	NA	NA	6.0	6.0	6.0	4.9	7.4	9.6
N/A	N/A	N/A	35.0+	78.3+	150.0+	NA	NA	NA	90.0	120.0	150.0	84.0	120.0	125.0
N/A	10.7	N/A	5.7	6.6	8.4	NA	NA	NA	4.0	4.0	4.0	2.4	5.8	8.9
N/A	1.1	N/A	0.4	0.5	0.6	NA	NA	NA	0.7	0.7	0.7	0.5	0.7	0.9
N/A	N/A	N/A	0.8	0.8	0.9	NA	NA	NA	1.0	1.0	1.0	0.6	1.1	1.5
N/A	8.0	N/A	23.0	NA	40.0	NA	NA	NA	8.6	8.6	8.6	9.7	10.3	10.8
N/A	N/A	N/A	23.5	28.2	35.3	NA	NA	NA	15.0	20.0	25.0	>12.9	> 14.5	17.1
N/A	11.0	N/A	14.9	15.1	15.3	NA	NA	NA	7.4	7.4	7.4	8.4	8.8	9.2
N/A	1.0	N/A	0.4	0.4	0.4	NA	NA	NA	0.8	0.8	0.8	0.6	0.7	0.7
N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	80.0	100.0	140.0	80.0	100.0	140.0
N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	19.6	36.6	80.0	19.6	36.6	80.0
N/A	N/A	N/A	NA											
N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	13.3	16.7	23.3	10.8	13.5	18.9
N/A	N/A	N/A	NA	NA^{2}	NA	NA								
N/A	N/A	N/A	NA											
N/A	N/A	N/A	NA											
N/A	N/A	N/A	NA											
N/A	N/A	N/A	silt	sand	sand	NA	NA	NA	silt	sand	sand	0.09	0.09	0.09
N/A	N/A	N/A	silt	sand	sand	NA	NA	NA	silt	sand	sand	0.11	0.11	0.11
	N/A			NA			NA			2,300			2,275	
	N/A			NA			NA			2,790			2,730	
	N/A			1.01			NA			1.2			1.2	
	N/A			0.0019			NA			N/A			NA	
	N/A			0.0019			NA			0.001			NA	
	N/A			C5/6			NA			E5/6			E5/6	

[^3]
${ }^{1}$ Water was not present within the channel during Year-1 stream monitoring activities; thus, riffle slopes are based on thalweg survey elevations, *NA-not available

${ }^{1}$ Water was not present within the channel during Year-1 stream monitoring activities; thus, facet lengths and slopes are unavailable, *NA-not available

[^4]

[^5]| Table B-6a. Visual Morphological Stability Assessment ${ }^{1}$
 Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S
 Camp Branch (Reach 1) 1,810 linear feet | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Feature Category | Metric (per As-built and reference baselines) | (\# Stable)
 Number
 Performing
 as
 Intended | Total number per As-built | Total Number / feet in unstable state | $\%$ Perform in Stable Condition | Feature
 Perform
 Mean or Total |
| A. Riffles | 1. Present? | 21 | 24 | N/A* | 88 | |
| | 2. Armor stable (e.g. no displacement)? | 24 | 24 | N/A | 88 | |
| | 3. Facet grade appears stable? | 21 | 24 | N/A | 88 | |
| | 4. Minimal evidence of embedding/fining? | 21 | 24 | N/A | 88 | |
| | 5. Length appropriate? | 21 | 24 | N/A | 88 | 88\% |
| B. Pools | 1. Present? (e.g not subject to severe aggrad. or migrat.?) | 19 | 24 | N/A | 79 | |
| | 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6 ?) | 19 | 24 | N/A | 79 | |
| | 3. Length appropriate? | 19 | 24 | N/A | 79 | 79\% |
| C. Thalweg | 1. Upstream of meander bend (run/inflection) centering? | N/A | N/A | N/A | 100 | |
| | 2. Downstream of meander (glide/inflection) centering? | N/A | N/A | N/A | 100 | 100\% |
| D. Meanders | 1. Outer bend in state of limited/controlled erosion? | N/A | N/A | N/A | 100 | |
| | 2. Of those eroding, \# w/concomitant point bar formation? | N/A | N/A | N/A | 100 | |
| | 3. Apparent Rc within spec? | N/A | N/A | N/A | 100 | |
| | 4. Sufficient floodplain access and relief? | N/A | N/A | N/A | 100 | 100\% |
| E. Bed
 General | 1. General channel bed aggradation areas (bar formation) | N/A | N/A | N/A | 90 | |
| | 2. Channel bed degradation - areas of increasing down-cutting or head cutting? | N/A | N/A | N/A | 100 | 95\% |
| F. Vanes | 1. Free of back or arm scour? | N/A | N/A | N/A | N/A | |
| | 2. Height appropriate? | N/A | N/A | N/A | N/A | |
| | 3. Angle and geometry appear appropriate? | N/A | N/A | N/A | N/A | |
| | 4. Free of piping or other structural failures? ${ }^{3}$ | N/A | N/A | N/A | N/A | N/A |
| G. Wads/ Boulders | | N/A | N/A | N/A | N/A | |
| | 1. Free of scour? | N/A | N/A | N/A | N/A | N/A |
| | | | | | | |

${ }^{1}$ Visual Morphologic Stability Assessment Tables prepared for Camp Branch (Reach 1) and UT to Camp Branch (Reaches 3 and 4) only (longitudinal profiles were performed along these reaches only)
*N/A-Not applicable

Table B-6b. Visual Morphological Stability Assessment ${ }^{1}$ Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S UT to Camp Branch (Reaches 3 and 4) 556 linear feet						
Feature Category	Metric (per As-built and reference baselines)	(\# Stable) Number Performing as Intended	Total number per As-built	Total Number / feet in unstable state	\% Perform in Stable Condition	Feature Perform Mean or Total
A. Riffles	1. Present?	16	16	N/A*	88	
	2. Armor stable (e.g. no displacement)?	16	16	N/A	88	
	3. Facet grade appears stable?	16	16	N/A	88	
	4. Minimal evidence of embedding/fining?	16	16	N/A	88	
	5. Length appropriate?	16	16	N/A	88	100\%
B. Pools	1. Present? (e.g not subject to severe aggrad. or migrat.?)	17	17	N/A	79	
	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6 ?)	17	17	N/A	79	
	3. Length appropriate?	17	17	N/A	79	100\%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	N/A	N/A	N/A	100	
	2. Downstream of meander (glide/inflection) centering?	N/A	N/A	N/A	100	100\%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	N/A	N/A	N/A	100	
	2. Of those eroding, \# w/concomitant point bar formation?	N/A	N/A	N/A	100	
	3. Apparent Rc within spec?	N/A	N/A	N/A	100	
	4. Sufficient floodplain access and relief?	N/A	N/A	N/A	100	100\%
E. Bed General	1. General channel bed aggradation areas (bar formation)	N/A	N/A	N/A	100	
	2. Channel bed degradation - areas of increasing down-cutting or head cutting?	N/A	N/A	N/A	100	100\%
F. Vanes	1. Free of back or arm scour?	N/A	N/A	N/A	N/A	
	2. Height appropriate?	N/A	N/A	N/A	N/A	
	3. Angle and geometry appear appropriate?	N/A	N/A	N/A	N/A	
	4. Free of piping or other structural failures? ${ }^{3}$	N/A	N/A	N/A	N/A	N/A
G. Wads/ Boulders	1. Free of scour?	N/A	N/A	N/A	N/A	
	2. Footing stable?	N/A	N/A	N/A	N/A	N/A

[^6]

Cross-Section 6, looking upstream

Stream:	Camp Branch (Reach 1)	Page 1
	Longitudinal Profile	
Date:	$10 / 9 / 2007$	
Crew:	Jim Cooper, Michael Gloden	

Station	TW Elevation	BKF Elevation	Feature	Riffle Length	Riffle Slope	Pool Length	Pool Spacing
0.00	94.55		(tp)			18.34	
18.34	94.79		(bp)				
39.12	95.43	97.29	(tr)	28.26	0.00566		
52.93	95.40		(tw)				
67.38	95.27		(br)				
83.89	95.52		(tw)				
98.91	94.90		(tp)			11.58	98.91
110.49	94.85		(bp)				
121.55	94.95	97.16	(tr)				
139.23	94.97		(tw)				
149.16	95.14		(tw)				
161.55	95.05		(tw)				
168.31	95.02		(tw)				
183.02	95.16		(tw)				
195.24	94.79	96.67	(tw)				
205.93	94.78		(tw)				
218.79	95.07		(tw)				
231.36	94.78		(tw)				
243.27	95.29	96.89	(tr)	20.95	0.0186		
264.22	94.90		(br)				
272.30	94.24		(tp)			17.5	173.39
277.56	94.15		(mp)				
289.80	94.43		(bp)				
299.26	94.57		(tw)				
308.83	94.82		(tr)	18.85	0.00796		
327.68	94.67		(br)				
334.97	94.69		(tw)				
355.92	93.96		(tp)			18.08	83.62
374.00	93.18		(bp)				
384.70	94.07	96.12	(tw)				
389.99	93.98		(tw)				
399.47	94.29		(tw)				
415.47	94.59		(to)				
431.07	94.37	96.21	(bo)				
441.42	94.17		(tw)				
457.58	93.95		(tw)				
466.99	93.44		(tp)			35.13	111.07
479.39	93.64		(tw)				
493.41	93.54		(tw)				
502.12	93.35		(bp)				
522.50	93.97		(tr)	13.23	0.0068		
535.73	93.88	95.78	(br)				
542.21	93.31		(tp)			21.71	75.22

Stream:	Camp Branch (Reach 1)	Page 2
	Longitudinal Profile	
Date:	$10 / 9 / 2007$	
Crew:	Jim Cooper, Michael Gloden	

	TW	BKF		Riffle	Riffle	Pool	Pool
Station 556.14	Elevation 93.11		Feature (tw)		Slope		
563.92	93.11		(bp)				
571.76	93.73		(tr)	10.17	0.0236		
581.93	93.49		(br)				
587.09	92.92		(tp)			26.51	44.81
597.67	92.98		(tw)				
613.60	93.04		(bp)				
627.25	93.43		(tr)	19.4	0.00842		
646.65	93.27	95.14	(br)				
660.73	93.24		(tw)				
667.79	92.85		(tp)			24.87	80.7
675.47	92.84		(tw)				
692.66	92.81		(bp)				
703.60	93.25		(tr)	35.92	0.00667		
723.35	93.25		(tw)				
739.52	93.01	94.98	(br)				
748.21	92.06		(tp)			12.42	80.42
760.63	92.13		(bp)				
777.26	92.90		(tr)	14.69	0.022		
791.95	92.57	94.43	(br)				
798.96	92.25		(tp)			35.48	50.75
815.18	92.15		(tw)				
834.44	91.93		(bp)				
849.49	92.72	94.56	(tr)	19.97	0.015		
869.46	92.42		(br)				
887.11	91.80		(tw)				
892.42	91.71		(tp)			21.35	93.46
900.87	91.28		(tw)				
913.77	91.30		(bp)				
931.00	92.36		(tr)	19.72	0.007		
950.72	92.22	94.03	(br)				
960.69	91.69		(tp)			17.42	68.27
971.09	91.32		(tw)				
978.11	91.33		(bp)				
992.42	92.13		(tr)	23.55	0.0204		
1015.97	91.66		(br)				
1029.74	91.12		(tp)			25.07	69.05
1041.73	90.76		(tw)				
1054.81	91.16		(bp)				
1067.60	91.65	93.67	(tr)	21.65	0.0173		
1089.25	91.27		(br)				
1101.65	91.27		(tw)				
1113.94	90.24		(tp)			29.51	84.2

Stream: Date: Crew:	Camp Branch (Reach 1) Longitudinal Profile 10/9/2007 Jim Cooper, Michael Gloden			Page 3			
Station	TW Elevation	BKF Elevation	Feature	Riffle Length	Riffle Slope	Pool Length	Pool Spacing
1125.78	91.18		(tw)				
1143.45	90.85		(bp)				
1152.68	91.67		(tr)	24.11	0.00958		
1176.79	91.44		(br)				
1194.50	91.10		(tp)			21.24	80.56
1208.38	90.75		(tw)				
1215.74	90.73		(bp)				
1222.63	91.17		(tw)				
1233.10	91.42	93.43	(tr)	20.15	0.0186		
1253.25	91.03		(br)				
1266.26	90.28		(tp)			17.81	71.76
1276.00	89.86		(tw)				
1284.07	90.23		(bp)				
1297.54	91.12	93.24	(tr)	27.2	0.00963		
1324.74	90.86		(br)				
1338.57	90.55		(tw)				
1358.50	90.10		(tp)			32.22	92.24
1370.05	89.80		(tw)				
1390.72	90.18		(bp)				
1400.24	90.77	92.80	(tr)	37.02	0		
1437.26	90.86		(br)				
1455.97	90.47		(tw)				
1462.33	89.72		(tp)			14.02	103.83
1469.69	89.42		(tw)				
1476.35	89.70		(bp)				
1494.57	90.20	92.53	(tr)	43.26	0.00814		
1515.98	90.36		(tw)				
1537.83	89.85		(br)				
1545.89	89.28		(tp)			37	83.56
1570.71	88.38		(tw)				
1582.89	88.84		(bp)				
1602.68	89.55	92.13	(tr)	22.81	0.00231		
1625.49	89.52		(br)				
1643.16	88.78		(tp)				97.27
1655.53	88.56		(tw)				
1668.24	89.00	91.79	(tw)				
1676.26	88.74		(tw)				
1703.67	88.68		(tw)				
1727.69	88.79		(tw)				
1742.42	88.94	91.45	(tw)				

Stream: Date: Crew:	Camp Branch (Reach 1) Longitudinal Profile 10/9/2007 Jim Cooper, Michael Gloden						Pool Spacing
	TW	BKF Elevation		Riffle Length	Riffle Slope	Pool Length	
1759.49			(tw)				
1773.45	87.70		(tw)				
1791.42	88.32		(tw)				
1810.17	88.75		(tw)				

NOTE: All above elevations are based on an assumed ESC Benchmark \#1 elevation equivalent to 100.0 ft .

Stream:	UT to Camp Branch (Reaches 3 and 4)	Page 1
	Longitudinal Profile Date:	$10 / 10 / 2007$
Crew:	Jim Cooper, Michael Gloden	

$\left.\left.\begin{array}{cccc}\text { Station } & \begin{array}{c}\text { TW } \\ \text { Elevation }\end{array} & \begin{array}{c}\text { BKF } \\ \text { Elevation } \\ 0.00\end{array} & 102.30\end{array}\right) \begin{array}{c}\text { Feature } \\ 9.54 \\ 21.66 \\ 102.29\end{array}\right)$

Stream:	UT to Camp Branch (Reaches 3 and 4)	Page 2
	Longitudinal Profile	
Date:	$10 / 10 / 2007$	
Crew:	Jim Cooper, Michael Gloden	

Station	TW Elevation	BKF Elevation	Feature (tw)
377.62	98.87		(tw)
385.30	98.61		(tw)
391.58	98.58		(tw)
399.27	98.77	100.18	(tw)
410.14	98.43		(tw)
418.53	98.14		(tw)
427.61	98.10		(tw)
435.05	98.20		(tw)
442.44	97.98		(tw)
447.53	97.62	98.84	(tw)
461.89	97.61		(tw)
468.05	97.67		(tw)
476.02	97.66		(tw)
484.40	97.45		(tw)
492.81	97.04	98.87	(tw)
499.71	97.34		(tw)
507.28	97.37		(tw)
510.97	96.96		(tw)
517.27	96.79		(tw)
523.42	96.74		(tw)
528.12	96.94		(tw)
533.43	96.63		(tw)
545.47	96.16	98.30	(tw)
549.98	96.00		(tw)

NOTE: Water was not present within the channel at the time of stream monitoring activities.
Thus, it was infeasible to provide facet lengths, slopes, and pool-to-pool spacing.
NOTE: All above elevations are based on an assumed ESC Benchmark \#1 elevation equivalent to 100.0 ft .

Camp Branch (Reach 1) Reach-Wide Pebble Count

UT to Camp Branch (Reaches 3 and 4) Reach-Wide Pebble Count

Dula Thoroughfare (Reaches 5 and 6) Reach-Wide Pebble Count

UT to Dula Thoroughfare (Reach 7) Reach-Wide Pebble Count

$\begin{array}{r}\text { Table B-7. Benchmark Locations and Relative Elevations* }\end{array}$				
Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S				

Elevation\end{array}\right]\)
*See Figures 2A and 2B for benchmark locations

Table B-8. GPSd Cross-Section Pin Locations* Bishop Site Stream and Wetland Restoration/EEP Project No. D05010S Cross-Section Pin ID Northing Easting XS 1 XPIN XS 1 RPIN			
XS 2	LPIN	514372.513	1672926.642
XS 2	RPIN	514589.272	1672820.192
XS 3	LPIN	51474.972	1672949.650
XS 3	RPIN	514217.030	1672820.192
XS 4	LPIN	514234.833	1673092.595
XS 4	RPIN	514217.058	1673206.045
XS 5	LPIN	514869.414	1673092.301
XS 5	RPIN	514814.619	1672311.319
XS 6	LPIN	514869.414	1672319.003
XS 6	RPIN	514824.773	1672359.353
XS 7	LPIN	514993.448	1672275.625
XS 7	RPIN	515004.123	1672326.182
XS 8	LPIN	514993.448	1672275.625
XS 8	RPIN	515022.613	1672308.191
XS 9	LPIN	512246.371	1675315.753
XS 9	RPIN	512174.486	1675213.387
XS 10	LPIN	511926.018	1675047.974
XS 10	RPIN	511828.923	1675111.251
XS 11	LPIN	511677.619	1675681.854
XS 11	RPIN	511596.832	1675553.146
XS 12	LPIN	511167.049	1676021.478
XS 12	RPIN	511087.167	1675919.097
XS 13	LPIN	509761.720	1672413.476
XS 13	RPIN	509716.789	1672416.146
XS 14	LPIN	509916.334	1672836.351
XS 14	RPIN	509845.800	1672875.848
XS 15	LPIN	509993.785	1673628.268
XS 15	RPIN	509923.837	1673649.764

*Note: All cross-section plot elevations are based on an assumed left pin (LPIN) elevation of 100.0 ft .

APPENDIX C: WETLAND RAW DATA

WETLAND RAW DATA

Three groundwater gauges were installed within wetland restoration areas adjacent to Dula Thoroughfare (Figure 2B). Gauges 2 and 3 remain in their original locations. Gauge 1 was moved to its present location to better reflect local groundwater conditions. Since gauges achieved hydrologic success criteria (see Section 3.3 "Wetland Assessment"), no wetland problem area table has been included.

Precipitation data for the following hydrographs was obtained from Weather Underground for the Troy, NC weather station (the nearest offering daily precipitation data) at the following URL:
http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KNCTROY1\&day=15\&year=2007
\&month=12\&graphspan=year

Bishop Stream and Wetland Mitigation Monitoring Gauge 1 -9DE7744

(u!! uo!nept!d!oədd
Bishop Stream and Wetland Mitigation

*Gauge installed 4/10/07

(u! uo!!̣et!d!oədd

[^0]: *N/A - Not applicable

[^1]: *N/A-Not Applicable, ${ }^{* *}$ NA-Historical project documents were unavailable at the time of report submission, ${ }^{1}$ As-built data based on Year-1 survey

[^2]: *N/A-Not Applicable, ${ }^{* *}$ NA-Historical project documents were unavailable at the time of report submission, ${ }^{1}$ As-built data based on Year-1 survey, ${ }^{2}$ Water was not present within the channel at the time of surveying. Thus, facet slopes and lengths were not feasible to calculate.

[^3]: *N/A-Not Applicable, ${ }^{* *}$ NA-Historical project documents were unavailable at the time of report submission, ${ }^{1}$ As-built data based on Year-1 survey, ${ }^{2}$ Per the Site Monitoring Plan,
 longitudinal profiles were not conducted along Dula Thoroughfare

[^4]: *NA-not available, ${ }^{1}$ Per the Site Monitoring Plan, longitudinal profiles were not conducted along Dula Thoroughfare

[^5]: *NA-not available, ${ }^{1}$ Per the Site Monitoring Plan, longitudinal profiles were not conducted along UT to Dula Thoroughfare

[^6]: ${ }^{\text {T }}$ Visual Morphologic Stability Assessment Tables prepared for Camp Branch (Reach 1) and UT to Camp Branch (Reaches 3 and 4) only (longitudinal profiles were performed along these reaches only)
 *N/A-Not applicable

